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Dominant Application Platforms 
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 Laptop/Handheld (“Mobile Client”) 
 Par Lab focuses on mobile clients 

 Data Center or Cloud (“Cloud”) 
 RAD Lab/AMPLab focuses on Cloud 

 Both together (“Client+Cloud”) 
 ParLab-AMPLab collaborations 
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Manycore 

Original predictions, 2x cores every 2 years 
 256 cores by 2013 

Reality was <2+ cores every 2 years 
 8-16 cores in 2013 

 But real growth was in SIMD performance 
 Wider, more capable SIMD units on multicore 
 GP-GPUs 

5 

Recent GPUs have up to 2,048 vector lanes! 
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GPU/SIMD Effectiveness 

Many of the parallel patterns are amenable to 
data-parallel execution 

Despite limited memory capacity and 
cumbersome programming model, GPUs were 
surprisingly effective on wide range of apps 
 Easier to get higher speedups than multicore 
 Apps developers voted with their feet 

 Prediction: Better CPU SIMD extensions and 
integrated GPUs having to use same memory 
system will blur/narrow CPU/GPU difference 
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Performance/Energy Counters 

We architected our bare minimum requirements 
for accurate performance/energy counters 

Bad news: In 2013, commercial processors still 
don’t meet our bare minimum 

Good news: Energy counters have started 
appearing 

 Prediction: Counters should be given higher 
priority but will continue to be “unloved” parts of 
future architectures 
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RAMP Gold 

Rapid accurate simulation of 
manycore architectural ideas 
using FPGAs 
Initial version models 64 cores  
of SPARC v8 with shared  
memory system on $750 board 
Hardware FPU, MMU, boots our 
OS and Par Lab stack! 
 Cost Performance 

(MIPS) 
Time per 64 core 

simulation 

Software 
Simulator $2,000 0.1 - 1 250 hours 

RAMP Gold $2,000 + $750 50 - 100 1 hour    

8 Download at: https://sites.google.com/site/rampgold/ 
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Architecture FPGA Emulation 

RAMP Gold design forms core of DIABLO 
“Datacenter-In-A-Box at LOw cost” 
 Execution-driven model of entire 2,000-node 

datacenter including network switches 
Now, generate FPGA emulations (FAME-0) of 

own RISC-V processors from Chisel code 
 Future, developing techniques for automatic 

generation of efficient FPGA models from RTL 
 Chisel automatically generating higher FAME 
 New DREAMER emulation architecture 

9 



BERKELEY PAR LAB RISC-V ISA 
 A new clean-slate open-source ISA to support 

research and education 
 Ports of Tessellation, Akaros, Linux OS, gcc, 

LLVM,.. 
Multiple implementations including “Rocket” in-

order research core, plus “Sodor” family of 
educational processors 

New vector-thread architecture designs 
 FPGA emulations + tapeouts of real chips 
 To be released soon at: 

 http://www.riscv.org 

10 



BERKELEY PAR LAB 

Chisel: Constructing Hardware 
In a Scala Embedded Language 

 Embed a hardware-description language in Scala, 
using Scala’s extension facilities 

 A hardware module is just a data structure in Scala 
Different output routines can generate different 

types of output (C, FPGA-Verilog, ASIC-Verilog) 
from same hardware representation 

 Full power of Scala for writing hardware generators 
 Object-Oriented: Factory objects, traits, overloading etc 
 Functional: Higher-order funcs, anonymous funcs, 

currying 
 Compiles to JVM: Good performance, Java interoperability 

Download from http://chisel.eecs.berkeley.edu 
11 
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“Agile Hardware” Development 
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Clock 
test 
site 

SRAM 
test site 

DCDC 
test site 

Processor 
Site 

Multiple 28nm and 45nm GHz-class processor tapeouts 
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Operating Systems 

 Pursued our original approach of very thin 
hypervisor layer managing partitions 

Many ideas swirling in early days of project, 
concrete implementations on real x86 hardware 
and RAMP Gold helped provide focus 

OS group split into cloud team that moved to 
AMPLab (Akaros) and client team in Par Lab 
(Tessellation) 

13 
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Tessellation OS: Space-Time Partitioning 
+ 2-Level Scheduling 

1st level: OS determines 
coarse-grain allocation of 
resources to jobs over space 
and time 

2nd level: Application schedules 
component tasks onto 
available “harts” (hardware 
thread contexts) using Lithe 
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PACORA: 
Resource Management using Convex Optimization 

 La = RUa(r(0,a), r(1,a), …, r(n-1,a)) La
 

Pa(La) 

Continuously  
Minimize 

(subject to restrictions 
on the total amount of 

resources) 

 Lb = RUb(r(0,b), r(1,b), …, r(n-1,b)) 
 Lb

 

Pb(Lb) 

Penalty Function 
Reflects the app’s 

importance 

Convex Surface 
Performance Metric (L),  e.g., latency 

Resource Utility Function 
Performance as function of 

resources 

 Each process receives a vector of basic resources dedicated to it 
 e.g., fractions of cores, cache slices, memory pages, bandwidth 

 Allocate minimum for QoS requirements 
 Allocate remaining to meet some system-level objective 

 e.g., best performance, lowest energy, best user experience 

 

QoS Req. 
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App 2 

“Harts”: Hardware Threads 
A Better Resource Abstraction 

App 1 

Virtualized 
Threads 

• Merged resource and  
computation abstraction.  

OS 
0 1 2 3 

Hardware 

App1 

OS 
0 1 2 3 

Hardware 

Harts 
(HW Thread Contexts) 

App2 

• More accurate 
resource abstraction.  
• Let apps provide own 
computation abstractions 

Hardware Partitions 
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Lithe: “Liquid Thread Environment” 

Lithe is an ABI to allow application components to 
co-operatively share hardware threads. 
Each component is free to map computational to 

hardware threads in any way they see fit 
 No mandatory thread or task abstractions 

Components request but cannot demand harts, and 
must yield harts when blocked or finished with task 
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Types of Programming 
(or “types of programmer”) 

Hardware/OS 

Efficiency-Level 
(MS in CS) C/C++/FORTRAN 

assembler 

Java/C# Uses hardware/OS 
primitives, builds 
programming 
frameworks (or apps) 

Productivity-Level 
(Some CS courses) 

Python/Ruby/Lua 

Scala 

Uses programming 
frameworks, writes 
application 
frameworks (or apps) 
 

Haskell/OCamL/F# 

Domain-Level 
(No formal CS) 

Max/MSP, SQL, 
CSS/Flash/Silverlight, 
Matlab, Excel 

Builds app with DSL 
and/or by customizing 
app framework 

Provides hardware 
primitives and OS services 

Example Languages Example Activities 
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How to make parallelism visible? 

 In a new general-purpose parallel language? 
 An oxymoron? 
 Won’t get adopted 
 Most big applications written in >1 language 

 Par Lab bet on Computational and Structural 
Patterns at all levels of programming 
(Domain thru Efficiency) 
 Patterns provide a good vocabulary for domain experts 
 Also comprehensible to efficiency-level experts or 

hardware architects 
 Lingua franca between the different levels in Par Lab 
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Computational Patterns 
Common Across Applications 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 
Berkeley View 

“Dwarfs” 

20 
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How do compelling apps relate to 13 dwarfs? 
  

Dwarf/Patterns Popularity  
  (Red Hot  Blue Cool) 

Computation 
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Unstructured-Grids 

Structured-Grids 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Arbitrary-Static-Task-Graph 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-
Invocation 

Puppeteer  

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-
Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

Task-Parallelism 
Divide and Conquer 

Data-Parallelism 
Pipeline 

Discrete-Event  
Geometric-Decomposition 
Speculation 

SPMD 
Data-Par/index-space 

Fork/Join 
Actors 

Distributed-Array 
Shared-Data 

Shared-Queue 
Shared-map 
Partitioned Graph 

MIMD 
SIMD 

Parallel Execution Patterns 

Concurrent Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Message-Passing 
Collective-Comm. 

  

Thread-Pool 
Task-Graph 

Data structure Program structure 

Point-To-Point-Sync. (mutual exclusion) 
collective sync. (barrier) 

  

Loop-Par. 
Task-Queue 

Transactions 

Thread creation/destruction 
Process creation/destruction 
 

Concurrency Foundation constructs (not expressed as patterns) 

“Our” Pattern Language (OPL-2010) 

A = M x V 

Refine Towards 
Implementation 
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Mapping Patterns to Hardware 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Multicore GPU “Cloud” 

Only a few types of hardware platform 
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High-level pattern constrains space 
of reasonable low-level mappings 

(Insert latest OPL chart showing path) 

24 
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Specializers: Pattern-specific and 
platform-specific compilers 

Multicore GPU “Cloud” 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Allow maximum efficiency and expressibility in 
specializers by avoiding mandatory intermediary layers 

25 

aka. “Stovepipes” 
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SEJITS: “Selective, Embedded, 
Just-In Time Specialization” 

  SEJITS bridges productivity and efficiency layers through 
specializers embedded in modern high-level productivity 
language (Python, Ruby) 
 Embedded “specializers” use language facilities to map 

high-level pattern to efficient low-level code (at run time, 
install time, or development time) 

 Specializers can incorporate or package autotuners 
Two ParLab SEJITS projects: 
 Copperhead: Data-parallel subset of Python, development 

continuing at NVIDA 
 Asp: “Asp is SEJITS in Python” general specializer 

framework 
 Provide functionality common across different specializers 
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SEJITS In A Nutshell 
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Current Par Lab Stack 
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Lithe User-Level Scheduling ABI 

Tessellation OS 
Hardware Resources (Cores, Cache/Local Store, Bandwidth) 

Module 1 
Scheduler 

TBB 
Scheduler 

Efficiency 
Level Code TBB Code 

OpenMP 
Scheduler 

Legacy OpenMP 

Application 1 

Module 3 

Module 2 Module 1 

Application 2 
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Supporting QoS inside Apps 
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Module 1 
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Efficiency 
Level Code TBB Code 

Real-Time Scheduler 

Real-Time 
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                       Application 
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Communication-Avoiding 
Algorithms 

 Past algorithms: FLOPs expense, Moves cheap 
 New theory: proves lower bounds on data movement; both 

serial (memory hierarchy) and parallel data movement 
 New practice: codes achieve lower bound and speedups 
 Widely applicable: all linear algebra, Health app… 

30 

Idea #1: read a piece of a sparse matrix 
(= graph) into fast memory and take 
multiple steps of higher-level algorithm 

Idea #2: replicate data (including left-
hand side arrays, as in C in C=A*B) and 
compute partial results, reduce later  
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A few examples of speedups 
 Matrix multiplication 

 Up to 12x on IBM 64K-core BG/P for n=8K; 95% less communication 
 QR decomposition (used in least squares, data mining, …) 

 Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10 
 Up to 6.7x on 16-proc. Pentium III cluster, for 100K x 200 
 Up to 13x on Tesla C2050 / Fermi, for 110k x 100 
 “infinite speedup” for out-of-core on PowerPC laptop  

• LAPACK thrashed virtual memory, didn’t finish 

 Eigenvalues of band symmetric matrices 
 Up to 17x on Intel Gainestown, 8 core, vs MKL 10.0 

 Iterative sparse linear equations solvers (GMRES) 
 Up to 4.3x on Intel Clovertown, 8 core 

 N-body (direct particle interactions with cutoff distance) 
 Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs. 

31 
Next: automatically xform code; new “HBL” theory just out! 
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Autotuning: Computers, Rather 
than People Tune Code 

 Autotuners are code generators plus search  
 Avoids two unsolved compiler problems: dependence analysis and 

accurate performance models 
 New: particles, stencils, graphs,… and manylane/core optimizations 
 New roofline model to aid in performance understanding 
 

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…  
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Parallel Correctness:  
Testing and Debugging 

 Some Results 
 Active Testing: for finding non-deterministic bugs such as data races, 

deadlocks, atomicity violations 
• Open-source [BSD-licensed] CalFuzzer for Java 
• Thrille for C/Pthreads and UPC  

 Specification and assertion framework for parallelism correctness 
• Introduced Bridge Predicates 
• Nondeterministic Sequential Specification to separate parallel correctness 

from functional correctness 
 Concurrit: A testing framework for concurrent programs 

• JUnit or xUnit for concurrent programs  
• Applied to Chrome and Firefox browsers 

 Concolic testing: for automated test input generation 
• Java 
• Javascript (ongoing) 
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Parallel Browser  

 2007 Vision: desktop-quality browsing on mobiles. 
Now: yes, but only 200 web pages / battery charge.  
 2007 Vision: browser as an app platform. 
Now: Google Glass is a browser app. 
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Parallel Browser 

Parallelism improves responsiveness, energy use. 
 2007: parallel browser controversial 
 2013: Mozilla Servo & Google Blink browsers 

 
Some of our results: 

• First scalable parser (in Qualcomm browser) 
• Synthesizer of parallel layout engines 
• Parallel layout retrofitted to Safari via WebCL 
• Collaboration with Mozilla on parallel Servo 
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Program Synthesis 

36 

Synthesis: search a huge space for a program that 
is semantically correct and high-performance 
 alternative to classical AST-rewrite compilers 
 search implemented as constraint solving 

 
Some of our synthesizers: 
 FTL: parallel layout engines 
 Programming for ULP spatial manycore 
 SQL query programming by demonstration 
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Music Application 

New user interfaces 
with pressure-sensitive 
multi-touch gestural 
interfaces 

Programmable virtual instrument 
and audio processing 

120-channel 
speaker array 
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More Applications: 
“Beating down our doors!” 

5 Original Apps: Parallel Browser (Ras Bodik), Music 
(David Wessel), Speech (Nelson Morgan), Health 
(Tony Keavney), Image Retrieval (Kurt Keutzer) 

New external application collaborators: 
 Pediatric MRI (Michael Lustig, Shreyas Vassanwala @Stanford) 
Multimedia and Speech (Dorothea Kolossa @TU Berlin) 
Computer Vision (Jitendra Malik, Thomas Brox) 
Computational Finance (Matthew Dixon @UCD) 
Natural Language Translation (Dan Klein) 
 Programming multitouch interfaces (Maneesh Agrawala) 
 Protein Docking (Henry Gabb, Intel) 
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Pediatric MRI 
Typical exam ~ 1 hour 
Motion blurs the images 
Scanner is a small loud tunnel 
 
Difficult for children to stay still! 
 
Traditional Solution:  Anesthesia 

Compressed 
Sensing reduces 
each scan to 15 

seconds But takes too long  
(hours) to 

reconstruct image 
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Compressed Sensing for 
Pediatric MRI 

• Image reconstruction from 1-2 hours down to < 1 min 
• In use in clinical trials  
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BERKELEY PAR LAB 

Demo: The Parallel Meeting Diarist 
Gerald Friedland 

International Computer Science Institute (ICSI) 
 
 Work together with 

primarily: 
Katya Gonina 
David Sheffield 
Adam Janin 
Brian Hill 
Jike Chong 
Nelson Morgan 
Kurt Keutzer 
Ganapati S. 
Mishali N. 
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BERKELEY PAR LAB 

Components of the Meeting Diarist 

Created a fully integrated, very fast meeting diarist 
SEJITized that is currently tech-transfered to Intel. 
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Diarizer Results and Impacts 

Created a fully integrated, very fast meeting diarist 
using SEJITs: 
 

Before Par Lab After Par Lab 
“who spoke 
when” 

~10k LOC 
0.3 x RT 

~100 LOC 
250 x RT 

“what was 
said” 

~100k LOC 
0.1 x RT 

~ 5k LOC 
1 x RT 

Online=Offline processing for “who spoke when” 
Diarization used for BIG DATA video processing 
Tech-transfer to Intel 



BERKELEY PAR LAB 

Par Lab Publications Tally 

 193 Conference Papers 
  28 Journal Papers 
  94 Technical Reports 
 12+ Best Paper Awards 

 
 Berkeley View TR, >1,300 citations 
 Par Lab papers, >8,000 citations 
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Par Lab Educational Impact 
 Par Lab summer bootcamps 

 2009-2012: >1300 attendees including >300 from industry  
 CS61C Reworked intro architecture class with parallelism 

 480 students in Fall 2012 semester 
 Revised 5th edition of undergrad text (used at 400 universities) 

 CS152 Undergrad Architecture using Chisel processors 
 CS164 Students design and own DSLs, implement a browser 
 CS194 Undergrad parallel patterns class 

 3rd offering, co-taught with Tim Mattson, Intel 
 3 posters here from successful undergrad projects 

 CS250 Graduate VLSI Design using Chisel/Agile Hardware 
 CS267 Graduate parallel computing class 

 Added material on dwarfs, patterns, autotuning, apps 
 Homeworks ported to .net with Microsoft 
 NSF-funded MOOC XSEDE launched spring 2013 
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Par Lab Students 

PhD students 
 91 total PhD participants, 
 23 of which graduated by 2013 
MS Students 
 35 total MS participants, 
 13 of which graduated by 2013 
Post-Docs 
 5 current 

47 
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Par Lab Book 

 18 chapters 
 Overview + 1-2 

research papers 
 ≈ 600 pages 
 Expected by June 30 
 Amazon Ebook $0.99 

 Print book signup page 
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Multiple Follow-On Projects 
Underway 

OS and Music work continuing in new SWARM 
Lab, programming the “swarm” of environmental 
devices 
http://swarmlab.eecs.berkeley.edu 

 Software synthesis, Correctness -> Chaperone, 
ExCape NSF Expedition 

 ASPIRE: patterns, communication-avoiding 
algorithms, SEJITS, RISC-V, specialized 
architectures, Chisel, Agile Hardware 
http://aspire.eecs.berkeley.edu 
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Thanks to our sponsors! 

Research supported by Microsoft (Award 
#024263) and Intel (Award #024894) funding 
and by matching funding by U.C. Discovery 
(Award #DIG07-10227). 

 Additional support comes from Par Lab affiliates 
National Instruments, NEC, Nokia, NVIDIA, 
Samsung, and Oracle/Sun. 
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