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4 

Dominant Application Platforms 
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 Laptop/Handheld (“Mobile Client”) 
 Par Lab focuses on mobile clients 

 Data Center or Cloud (“Cloud”) 
 RAD Lab/AMPLab focuses on Cloud 

 Both together (“Client+Cloud”) 
 ParLab-AMPLab collaborations 
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Manycore 

Original predictions, 2x cores every 2 years 
 256 cores by 2013 

Reality was <2+ cores every 2 years 
 8-16 cores in 2013 

 But real growth was in SIMD performance 
 Wider, more capable SIMD units on multicore 
 GP-GPUs 
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Recent GPUs have up to 2,048 vector lanes! 
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GPU/SIMD Effectiveness 

Many of the parallel patterns are amenable to 
data-parallel execution 

Despite limited memory capacity and 
cumbersome programming model, GPUs were 
surprisingly effective on wide range of apps 
 Easier to get higher speedups than multicore 
 Apps developers voted with their feet 

 Prediction: Better CPU SIMD extensions and 
integrated GPUs having to use same memory 
system will blur/narrow CPU/GPU difference 
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Performance/Energy Counters 

We architected our bare minimum requirements 
for accurate performance/energy counters 

Bad news: In 2013, commercial processors still 
don’t meet our bare minimum 

Good news: Energy counters have started 
appearing 

 Prediction: Counters should be given higher 
priority but will continue to be “unloved” parts of 
future architectures 
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RAMP Gold 

Rapid accurate simulation of 
manycore architectural ideas 
using FPGAs 
Initial version models 64 cores  
of SPARC v8 with shared  
memory system on $750 board 
Hardware FPU, MMU, boots our 
OS and Par Lab stack! 
 Cost Performance 

(MIPS) 
Time per 64 core 

simulation 

Software 
Simulator $2,000 0.1 - 1 250 hours 

RAMP Gold $2,000 + $750 50 - 100 1 hour    

8 Download at: https://sites.google.com/site/rampgold/ 
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Architecture FPGA Emulation 

RAMP Gold design forms core of DIABLO 
“Datacenter-In-A-Box at LOw cost” 
 Execution-driven model of entire 2,000-node 

datacenter including network switches 
Now, generate FPGA emulations (FAME-0) of 

own RISC-V processors from Chisel code 
 Future, developing techniques for automatic 

generation of efficient FPGA models from RTL 
 Chisel automatically generating higher FAME 
 New DREAMER emulation architecture 
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BERKELEY PAR LAB RISC-V ISA 
 A new clean-slate open-source ISA to support 

research and education 
 Ports of Tessellation, Akaros, Linux OS, gcc, 

LLVM,.. 
Multiple implementations including “Rocket” in-

order research core, plus “Sodor” family of 
educational processors 

New vector-thread architecture designs 
 FPGA emulations + tapeouts of real chips 
 To be released soon at: 

 http://www.riscv.org 
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Chisel: Constructing Hardware 
In a Scala Embedded Language 

 Embed a hardware-description language in Scala, 
using Scala’s extension facilities 

 A hardware module is just a data structure in Scala 
Different output routines can generate different 

types of output (C, FPGA-Verilog, ASIC-Verilog) 
from same hardware representation 

 Full power of Scala for writing hardware generators 
 Object-Oriented: Factory objects, traits, overloading etc 
 Functional: Higher-order funcs, anonymous funcs, 

currying 
 Compiles to JVM: Good performance, Java interoperability 

Download from http://chisel.eecs.berkeley.edu 
11 
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“Agile Hardware” Development 
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Clock 
test 
site 

SRAM 
test site 

DCDC 
test site 

Processor 
Site 

Multiple 28nm and 45nm GHz-class processor tapeouts 
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Operating Systems 

 Pursued our original approach of very thin 
hypervisor layer managing partitions 

Many ideas swirling in early days of project, 
concrete implementations on real x86 hardware 
and RAMP Gold helped provide focus 

OS group split into cloud team that moved to 
AMPLab (Akaros) and client team in Par Lab 
(Tessellation) 

13 
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Tessellation OS: Space-Time Partitioning 
+ 2-Level Scheduling 

1st level: OS determines 
coarse-grain allocation of 
resources to jobs over space 
and time 

2nd level: Application schedules 
component tasks onto 
available “harts” (hardware 
thread contexts) using Lithe 

Time 
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PACORA: 
Resource Management using Convex Optimization 

 La = RUa(r(0,a), r(1,a), …, r(n-1,a)) La
 

Pa(La) 

Continuously  
Minimize 

(subject to restrictions 
on the total amount of 

resources) 

 Lb = RUb(r(0,b), r(1,b), …, r(n-1,b)) 
 Lb

 

Pb(Lb) 

Penalty Function 
Reflects the app’s 

importance 

Convex Surface 
Performance Metric (L),  e.g., latency 

Resource Utility Function 
Performance as function of 

resources 

 Each process receives a vector of basic resources dedicated to it 
 e.g., fractions of cores, cache slices, memory pages, bandwidth 

 Allocate minimum for QoS requirements 
 Allocate remaining to meet some system-level objective 

 e.g., best performance, lowest energy, best user experience 

 

QoS Req. 
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App 2 

“Harts”: Hardware Threads 
A Better Resource Abstraction 

App 1 

Virtualized 
Threads 

• Merged resource and  
computation abstraction.  

OS 
0 1 2 3 

Hardware 

App1 

OS 
0 1 2 3 

Hardware 

Harts 
(HW Thread Contexts) 

App2 

• More accurate 
resource abstraction.  
• Let apps provide own 
computation abstractions 

Hardware Partitions 
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Lithe: “Liquid Thread Environment” 

Lithe is an ABI to allow application components to 
co-operatively share hardware threads. 
Each component is free to map computational to 

hardware threads in any way they see fit 
 No mandatory thread or task abstractions 

Components request but cannot demand harts, and 
must yield harts when blocked or finished with task 
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Types of Programming 
(or “types of programmer”) 

Hardware/OS 

Efficiency-Level 
(MS in CS) C/C++/FORTRAN 

assembler 

Java/C# Uses hardware/OS 
primitives, builds 
programming 
frameworks (or apps) 

Productivity-Level 
(Some CS courses) 

Python/Ruby/Lua 

Scala 

Uses programming 
frameworks, writes 
application 
frameworks (or apps) 
 

Haskell/OCamL/F# 

Domain-Level 
(No formal CS) 

Max/MSP, SQL, 
CSS/Flash/Silverlight, 
Matlab, Excel 

Builds app with DSL 
and/or by customizing 
app framework 

Provides hardware 
primitives and OS services 

Example Languages Example Activities 
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How to make parallelism visible? 

 In a new general-purpose parallel language? 
 An oxymoron? 
 Won’t get adopted 
 Most big applications written in >1 language 

 Par Lab bet on Computational and Structural 
Patterns at all levels of programming 
(Domain thru Efficiency) 
 Patterns provide a good vocabulary for domain experts 
 Also comprehensible to efficiency-level experts or 

hardware architects 
 Lingua franca between the different levels in Par Lab 
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Computational Patterns 
Common Across Applications 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 
Berkeley View 

“Dwarfs” 

20 
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How do compelling apps relate to 13 dwarfs? 
  

Dwarf/Patterns Popularity  
  (Red Hot  Blue Cool) 

Computation 
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Unstructured-Grids 

Structured-Grids 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Arbitrary-Static-Task-Graph 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-
Invocation 

Puppeteer  

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-
Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

Task-Parallelism 
Divide and Conquer 

Data-Parallelism 
Pipeline 

Discrete-Event  
Geometric-Decomposition 
Speculation 

SPMD 
Data-Par/index-space 

Fork/Join 
Actors 

Distributed-Array 
Shared-Data 

Shared-Queue 
Shared-map 
Partitioned Graph 

MIMD 
SIMD 

Parallel Execution Patterns 

Concurrent Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Message-Passing 
Collective-Comm. 

  

Thread-Pool 
Task-Graph 

Data structure Program structure 

Point-To-Point-Sync. (mutual exclusion) 
collective sync. (barrier) 

  

Loop-Par. 
Task-Queue 

Transactions 

Thread creation/destruction 
Process creation/destruction 
 

Concurrency Foundation constructs (not expressed as patterns) 

“Our” Pattern Language (OPL-2010) 

A = M x V 

Refine Towards 
Implementation 
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Mapping Patterns to Hardware 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Multicore GPU “Cloud” 

Only a few types of hardware platform 
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High-level pattern constrains space 
of reasonable low-level mappings 

(Insert latest OPL chart showing path) 

24 
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Specializers: Pattern-specific and 
platform-specific compilers 

Multicore GPU “Cloud” 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Allow maximum efficiency and expressibility in 
specializers by avoiding mandatory intermediary layers 

25 

aka. “Stovepipes” 
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SEJITS: “Selective, Embedded, 
Just-In Time Specialization” 

  SEJITS bridges productivity and efficiency layers through 
specializers embedded in modern high-level productivity 
language (Python, Ruby) 
 Embedded “specializers” use language facilities to map 

high-level pattern to efficient low-level code (at run time, 
install time, or development time) 

 Specializers can incorporate or package autotuners 
Two ParLab SEJITS projects: 
 Copperhead: Data-parallel subset of Python, development 

continuing at NVIDA 
 Asp: “Asp is SEJITS in Python” general specializer 

framework 
 Provide functionality common across different specializers 
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SEJITS In A Nutshell 

27 
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Current Par Lab Stack 

28 

Lithe User-Level Scheduling ABI 

Tessellation OS 
Hardware Resources (Cores, Cache/Local Store, Bandwidth) 

Module 1 
Scheduler 

TBB 
Scheduler 

Efficiency 
Level Code TBB Code 

OpenMP 
Scheduler 

Legacy OpenMP 

Application 1 

Module 3 

Module 2 Module 1 

Application 2 
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Supporting QoS inside Apps 

29 

Lithe 

Tessellation OS 
Hardware Resources (Cores, Cache/Local Store, Bandwidth) 

Module 1 
Scheduler 

TBB 
Scheduler 

Efficiency 
Level Code TBB Code 

Real-Time Scheduler 

Real-Time 
Cell 

                       Application 

Module 3 

Module 2 Module 1 

Best-Effort 
Cell 
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Communication-Avoiding 
Algorithms 

 Past algorithms: FLOPs expense, Moves cheap 
 New theory: proves lower bounds on data movement; both 

serial (memory hierarchy) and parallel data movement 
 New practice: codes achieve lower bound and speedups 
 Widely applicable: all linear algebra, Health app… 

30 

Idea #1: read a piece of a sparse matrix 
(= graph) into fast memory and take 
multiple steps of higher-level algorithm 

Idea #2: replicate data (including left-
hand side arrays, as in C in C=A*B) and 
compute partial results, reduce later  



BERKELEY PAR LAB 

A few examples of speedups 
 Matrix multiplication 

 Up to 12x on IBM 64K-core BG/P for n=8K; 95% less communication 
 QR decomposition (used in least squares, data mining, …) 

 Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10 
 Up to 6.7x on 16-proc. Pentium III cluster, for 100K x 200 
 Up to 13x on Tesla C2050 / Fermi, for 110k x 100 
 “infinite speedup” for out-of-core on PowerPC laptop  

• LAPACK thrashed virtual memory, didn’t finish 

 Eigenvalues of band symmetric matrices 
 Up to 17x on Intel Gainestown, 8 core, vs MKL 10.0 

 Iterative sparse linear equations solvers (GMRES) 
 Up to 4.3x on Intel Clovertown, 8 core 

 N-body (direct particle interactions with cutoff distance) 
 Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs. 

31 
Next: automatically xform code; new “HBL” theory just out! 
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Autotuning: Computers, Rather 
than People Tune Code 

 Autotuners are code generators plus search  
 Avoids two unsolved compiler problems: dependence analysis and 

accurate performance models 
 New: particles, stencils, graphs,… and manylane/core optimizations 
 New roofline model to aid in performance understanding 
 

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…  
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Parallel Correctness:  
Testing and Debugging 

 Some Results 
 Active Testing: for finding non-deterministic bugs such as data races, 

deadlocks, atomicity violations 
• Open-source [BSD-licensed] CalFuzzer for Java 
• Thrille for C/Pthreads and UPC  

 Specification and assertion framework for parallelism correctness 
• Introduced Bridge Predicates 
• Nondeterministic Sequential Specification to separate parallel correctness 

from functional correctness 
 Concurrit: A testing framework for concurrent programs 

• JUnit or xUnit for concurrent programs  
• Applied to Chrome and Firefox browsers 

 Concolic testing: for automated test input generation 
• Java 
• Javascript (ongoing) 
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Parallel Browser  

 2007 Vision: desktop-quality browsing on mobiles. 
Now: yes, but only 200 web pages / battery charge.  
 2007 Vision: browser as an app platform. 
Now: Google Glass is a browser app. 
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Parallel Browser 

Parallelism improves responsiveness, energy use. 
 2007: parallel browser controversial 
 2013: Mozilla Servo & Google Blink browsers 

 
Some of our results: 

• First scalable parser (in Qualcomm browser) 
• Synthesizer of parallel layout engines 
• Parallel layout retrofitted to Safari via WebCL 
• Collaboration with Mozilla on parallel Servo 

 



BERKELEY PAR LAB 

Program Synthesis 

36 

Synthesis: search a huge space for a program that 
is semantically correct and high-performance 
 alternative to classical AST-rewrite compilers 
 search implemented as constraint solving 

 
Some of our synthesizers: 
 FTL: parallel layout engines 
 Programming for ULP spatial manycore 
 SQL query programming by demonstration 
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Music Application 

New user interfaces 
with pressure-sensitive 
multi-touch gestural 
interfaces 

Programmable virtual instrument 
and audio processing 

120-channel 
speaker array 
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More Applications: 
“Beating down our doors!” 

5 Original Apps: Parallel Browser (Ras Bodik), Music 
(David Wessel), Speech (Nelson Morgan), Health 
(Tony Keavney), Image Retrieval (Kurt Keutzer) 

New external application collaborators: 
 Pediatric MRI (Michael Lustig, Shreyas Vassanwala @Stanford) 
Multimedia and Speech (Dorothea Kolossa @TU Berlin) 
Computer Vision (Jitendra Malik, Thomas Brox) 
Computational Finance (Matthew Dixon @UCD) 
Natural Language Translation (Dan Klein) 
 Programming multitouch interfaces (Maneesh Agrawala) 
 Protein Docking (Henry Gabb, Intel) 
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Pediatric MRI 
Typical exam ~ 1 hour 
Motion blurs the images 
Scanner is a small loud tunnel 
 
Difficult for children to stay still! 
 
Traditional Solution:  Anesthesia 

Compressed 
Sensing reduces 
each scan to 15 

seconds But takes too long  
(hours) to 

reconstruct image 
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Compressed Sensing for 
Pediatric MRI 

• Image reconstruction from 1-2 hours down to < 1 min 
• In use in clinical trials  
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Today’s Demos 
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Demo: The Parallel Meeting Diarist 
Gerald Friedland 

International Computer Science Institute (ICSI) 
 
 Work together with 

primarily: 
Katya Gonina 
David Sheffield 
Adam Janin 
Brian Hill 
Jike Chong 
Nelson Morgan 
Kurt Keutzer 
Ganapati S. 
Mishali N. 
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Components of the Meeting Diarist 

Created a fully integrated, very fast meeting diarist 
SEJITized that is currently tech-transfered to Intel. 
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Diarizer Results and Impacts 

Created a fully integrated, very fast meeting diarist 
using SEJITs: 
 

Before Par Lab After Par Lab 
“who spoke 
when” 

~10k LOC 
0.3 x RT 

~100 LOC 
250 x RT 

“what was 
said” 

~100k LOC 
0.1 x RT 

~ 5k LOC 
1 x RT 

Online=Offline processing for “who spoke when” 
Diarization used for BIG DATA video processing 
Tech-transfer to Intel 
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Par Lab Publications Tally 

 193 Conference Papers 
  28 Journal Papers 
  94 Technical Reports 
 12+ Best Paper Awards 

 
 Berkeley View TR, >1,300 citations 
 Par Lab papers, >8,000 citations 
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Par Lab Educational Impact 
 Par Lab summer bootcamps 

 2009-2012: >1300 attendees including >300 from industry  
 CS61C Reworked intro architecture class with parallelism 

 480 students in Fall 2012 semester 
 Revised 5th edition of undergrad text (used at 400 universities) 

 CS152 Undergrad Architecture using Chisel processors 
 CS164 Students design and own DSLs, implement a browser 
 CS194 Undergrad parallel patterns class 

 3rd offering, co-taught with Tim Mattson, Intel 
 3 posters here from successful undergrad projects 

 CS250 Graduate VLSI Design using Chisel/Agile Hardware 
 CS267 Graduate parallel computing class 

 Added material on dwarfs, patterns, autotuning, apps 
 Homeworks ported to .net with Microsoft 
 NSF-funded MOOC XSEDE launched spring 2013 
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Par Lab Students 

PhD students 
 91 total PhD participants, 
 23 of which graduated by 2013 
MS Students 
 35 total MS participants, 
 13 of which graduated by 2013 
Post-Docs 
 5 current 
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Par Lab Book 

 18 chapters 
 Overview + 1-2 

research papers 
 ≈ 600 pages 
 Expected by June 30 
 Amazon Ebook $0.99 

 Print book signup page 
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Multiple Follow-On Projects 
Underway 

OS and Music work continuing in new SWARM 
Lab, programming the “swarm” of environmental 
devices 
http://swarmlab.eecs.berkeley.edu 

 Software synthesis, Correctness -> Chaperone, 
ExCape NSF Expedition 

 ASPIRE: patterns, communication-avoiding 
algorithms, SEJITS, RISC-V, specialized 
architectures, Chisel, Agile Hardware 
http://aspire.eecs.berkeley.edu 
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Thanks to our sponsors! 

Research supported by Microsoft (Award 
#024263) and Intel (Award #024894) funding 
and by matching funding by U.C. Discovery 
(Award #DIG07-10227). 

 Additional support comes from Par Lab affiliates 
National Instruments, NEC, Nokia, NVIDIA, 
Samsung, and Oracle/Sun. 
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