
BERKELEY PAR LAB BERKELEY PAR LAB

Par Lab:
Where we ended up

Krste Asanovic, Ras Bodik,
Jim Demmel, Armando Fox, Tony Keaveny,

Kurt Keutzer, John Kubiatowicz,
Nelson Morgan, Dave Patterson, Koushik Sen,

David Wessel, and Kathy Yelick
UC Berkeley

Par Lab End-of-Project Party
May 30, 2013

BERKELEY PAR LAB

Par Lab Timeline

2

Initial
Meetings

“Berkeley View”
Techreport

Win UPCRC
Competition

UPCRC
Phase-I

UPCRC
Phase-II

You are here!

BERKELEY PAR LAB

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Computational Patterns/Dwarfs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Initial Par Lab “Lasagna” Stack

Easy to w rite correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

Po
w

er
/P

er
fo

rm
an

ce

3

BERKELEY PAR LAB

4

Dominant Application Platforms

4

 Laptop/Handheld (“Mobile Client”)
 Par Lab focuses on mobile clients

 Data Center or Cloud (“Cloud”)
 RAD Lab/AMPLab focuses on Cloud

 Both together (“Client+Cloud”)
 ParLab-AMPLab collaborations

BERKELEY PAR LAB

Manycore

Original predictions, 2x cores every 2 years
 256 cores by 2013

Reality was <2+ cores every 2 years
 8-16 cores in 2013

 But real growth was in SIMD performance
 Wider, more capable SIMD units on multicore
 GP-GPUs

5

Recent GPUs have up to 2,048 vector lanes!

BERKELEY PAR LAB

GPU/SIMD Effectiveness

Many of the parallel patterns are amenable to
data-parallel execution

Despite limited memory capacity and
cumbersome programming model, GPUs were
surprisingly effective on wide range of apps
 Easier to get higher speedups than multicore
 Apps developers voted with their feet

 Prediction: Better CPU SIMD extensions and
integrated GPUs having to use same memory
system will blur/narrow CPU/GPU difference

6

BERKELEY PAR LAB

Performance/Energy Counters

We architected our bare minimum requirements
for accurate performance/energy counters

Bad news: In 2013, commercial processors still
don’t meet our bare minimum

Good news: Energy counters have started
appearing

 Prediction: Counters should be given higher
priority but will continue to be “unloved” parts of
future architectures

7

BERKELEY PAR LAB

RAMP Gold

Rapid accurate simulation of
manycore architectural ideas
using FPGAs
Initial version models 64 cores
of SPARC v8 with shared
memory system on $750 board
Hardware FPU, MMU, boots our
OS and Par Lab stack!
 Cost Performance

(MIPS)
Time per 64 core

simulation

Software
Simulator $2,000 0.1 - 1 250 hours

RAMP Gold $2,000 + $750 50 - 100 1 hour

8 Download at: https://sites.google.com/site/rampgold/

BERKELEY PAR LAB

Architecture FPGA Emulation

RAMP Gold design forms core of DIABLO
“Datacenter-In-A-Box at LOw cost”
 Execution-driven model of entire 2,000-node

datacenter including network switches
Now, generate FPGA emulations (FAME-0) of

own RISC-V processors from Chisel code
 Future, developing techniques for automatic

generation of efficient FPGA models from RTL
 Chisel automatically generating higher FAME
 New DREAMER emulation architecture

9

BERKELEY PAR LAB RISC-V ISA
 A new clean-slate open-source ISA to support

research and education
 Ports of Tessellation, Akaros, Linux OS, gcc,

LLVM,..
Multiple implementations including “Rocket” in-

order research core, plus “Sodor” family of
educational processors

New vector-thread architecture designs
 FPGA emulations + tapeouts of real chips
 To be released soon at:

 http://www.riscv.org

10

BERKELEY PAR LAB

Chisel: Constructing Hardware
In a Scala Embedded Language

 Embed a hardware-description language in Scala,
using Scala’s extension facilities

 A hardware module is just a data structure in Scala
Different output routines can generate different

types of output (C, FPGA-Verilog, ASIC-Verilog)
from same hardware representation

 Full power of Scala for writing hardware generators
 Object-Oriented: Factory objects, traits, overloading etc
 Functional: Higher-order funcs, anonymous funcs,

currying
 Compiles to JVM: Good performance, Java interoperability

Download from http://chisel.eecs.berkeley.edu
11

BERKELEY PAR LAB

“Agile Hardware” Development

12

Clock
test
site

SRAM
test site

DCDC
test site

Processor
Site

Multiple 28nm and 45nm GHz-class processor tapeouts

BERKELEY PAR LAB

Operating Systems

 Pursued our original approach of very thin
hypervisor layer managing partitions

Many ideas swirling in early days of project,
concrete implementations on real x86 hardware
and RAMP Gold helped provide focus

OS group split into cloud team that moved to
AMPLab (Akaros) and client team in Par Lab
(Tessellation)

13

BERKELEY PAR LAB

Tessellation OS: Space-Time Partitioning
+ 2-Level Scheduling

1st level: OS determines
coarse-grain allocation of
resources to jobs over space
and time

2nd level: Application schedules
component tasks onto
available “harts” (hardware
thread contexts) using Lithe

Time
Sp

ac
e

2nd-level
Scheduling

Address Space
A

Address Space
B Task

Tessellation Kernel
(Partition Support)

CPU
L1

L2
Bank

DRAM

DRAM & I/O Interconnect

L1 Interconnect

CPU
L1

L2
Bank

DRAM

CPU
L1

L2
Bank

DRAM

CPU
L1

L2
Bank

DRAM

CPU
L1

L2
Bank

DRAM

CPU
L1

L2
Bank

DRAM
14

BERKELEY PAR LAB

PACORA:
Resource Management using Convex Optimization

 La = RUa(r(0,a), r(1,a), …, r(n-1,a)) La

Pa(La)

Continuously
Minimize

(subject to restrictions
on the total amount of

resources)

 Lb = RUb(r(0,b), r(1,b), …, r(n-1,b))
 Lb

Pb(Lb)

Penalty Function
Reflects the app’s

importance

Convex Surface
Performance Metric (L), e.g., latency

Resource Utility Function
Performance as function of

resources

 Each process receives a vector of basic resources dedicated to it
 e.g., fractions of cores, cache slices, memory pages, bandwidth

 Allocate minimum for QoS requirements
 Allocate remaining to meet some system-level objective

 e.g., best performance, lowest energy, best user experience

QoS Req.

BERKELEY PAR LAB

16

App 2

“Harts”: Hardware Threads
A Better Resource Abstraction

App 1

Virtualized
Threads

• Merged resource and
computation abstraction.

OS
0 1 2 3

Hardware

App1

OS
0 1 2 3

Hardware

Harts
(HW Thread Contexts)

App2

• More accurate
resource abstraction.
• Let apps provide own
computation abstractions

Hardware Partitions

BERKELEY PAR LAB

Lithe: “Liquid Thread Environment”

Lithe is an ABI to allow application components to
co-operatively share hardware threads.
Each component is free to map computational to

hardware threads in any way they see fit
 No mandatory thread or task abstractions

Components request but cannot demand harts, and
must yield harts when blocked or finished with task

17

BERKELEY PAR LAB

Types of Programming
(or “types of programmer”)

Hardware/OS

Efficiency-Level
(MS in CS) C/C++/FORTRAN

assembler

Java/C# Uses hardware/OS
primitives, builds
programming
frameworks (or apps)

Productivity-Level
(Some CS courses)

Python/Ruby/Lua

Scala

Uses programming
frameworks, writes
application
frameworks (or apps)

Haskell/OCamL/F#

Domain-Level
(No formal CS)

Max/MSP, SQL,
CSS/Flash/Silverlight,
Matlab, Excel

Builds app with DSL
and/or by customizing
app framework

Provides hardware
primitives and OS services

Example Languages Example Activities

18 18

BERKELEY PAR LAB

How to make parallelism visible?

 In a new general-purpose parallel language?
 An oxymoron?
 Won’t get adopted
 Most big applications written in >1 language

 Par Lab bet on Computational and Structural
Patterns at all levels of programming
(Domain thru Efficiency)
 Patterns provide a good vocabulary for domain experts
 Also comprehensible to efficiency-level experts or

hardware architects
 Lingua franca between the different levels in Par Lab

19 19

BERKELEY PAR LAB

Computational Patterns
Common Across Applications

App 1 App 2 App 3

Dense Sparse Graph Trav.
Berkeley View

“Dwarfs”

20

BERKELEY PAR LAB

21

How do compelling apps relate to 13 dwarfs?

Dwarf/Patterns Popularity
 (Red Hot  Blue Cool)

Computation

BERKELEY PAR LAB

22

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Arbitrary-Static-Task-Graph

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-
Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-Data

Shared-Queue
Shared-map
Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns

Concurrent Algorithm Strategy Patterns

Implementation Strategy Patterns

Message-Passing
Collective-Comm.

Thread-Pool
Task-Graph

Data structure Program structure

Point-To-Point-Sync. (mutual exclusion)
collective sync. (barrier)

Loop-Par.
Task-Queue

Transactions

Thread creation/destruction
Process creation/destruction

Concurrency Foundation constructs (not expressed as patterns)

“Our” Pattern Language (OPL-2010)

A = M x V

Refine Towards
Implementation

BERKELEY PAR LAB

Mapping Patterns to Hardware

App 1 App 2 App 3

Dense Sparse Graph Trav.

Multicore GPU “Cloud”

Only a few types of hardware platform

23

BERKELEY PAR LAB

High-level pattern constrains space
of reasonable low-level mappings

(Insert latest OPL chart showing path)

24

BERKELEY PAR LAB

Specializers: Pattern-specific and
platform-specific compilers

Multicore GPU “Cloud”

App 1 App 2 App 3

Dense Sparse Graph Trav.

Allow maximum efficiency and expressibility in
specializers by avoiding mandatory intermediary layers

25

aka. “Stovepipes”

BERKELEY PAR LAB

SEJITS: “Selective, Embedded,
Just-In Time Specialization”

  SEJITS bridges productivity and efficiency layers through
specializers embedded in modern high-level productivity
language (Python, Ruby)
 Embedded “specializers” use language facilities to map

high-level pattern to efficient low-level code (at run time,
install time, or development time)

 Specializers can incorporate or package autotuners
Two ParLab SEJITS projects:
 Copperhead: Data-parallel subset of Python, development

continuing at NVIDA
 Asp: “Asp is SEJITS in Python” general specializer

framework
 Provide functionality common across different specializers

26

BERKELEY PAR LAB

SEJITS In A Nutshell

27

Non-DSL
Code

Program
Code in
DSL A

Code in
DSL B

Interpreter Data

C
om

pi
le

Ph

as
e DSL

Codegen

External
Compiler

Data Code in
DSL A

Dynamic
Link Library

Result
Ex

ec
ut

e
Ph

as
e

BERKELEY PAR LAB

Current Par Lab Stack

28

Lithe User-Level Scheduling ABI

Tessellation OS
Hardware Resources (Cores, Cache/Local Store, Bandwidth)

Module 1
Scheduler

TBB
Scheduler

Efficiency
Level Code TBB Code

OpenMP
Scheduler

Legacy OpenMP

Application 1

Module 3

Module 2 Module 1

Application 2

BERKELEY PAR LAB

Supporting QoS inside Apps

29

Lithe

Tessellation OS
Hardware Resources (Cores, Cache/Local Store, Bandwidth)

Module 1
Scheduler

TBB
Scheduler

Efficiency
Level Code TBB Code

Real-Time Scheduler

Real-Time
Cell

 Application

Module 3

Module 2 Module 1

Best-Effort
Cell

BERKELEY PAR LAB

Communication-Avoiding
Algorithms

 Past algorithms: FLOPs expense, Moves cheap
 New theory: proves lower bounds on data movement; both

serial (memory hierarchy) and parallel data movement
 New practice: codes achieve lower bound and speedups
 Widely applicable: all linear algebra, Health app…

30

Idea #1: read a piece of a sparse matrix
(= graph) into fast memory and take
multiple steps of higher-level algorithm

Idea #2: replicate data (including left-
hand side arrays, as in C in C=A*B) and
compute partial results, reduce later

BERKELEY PAR LAB

A few examples of speedups
 Matrix multiplication

 Up to 12x on IBM 64K-core BG/P for n=8K; 95% less communication
 QR decomposition (used in least squares, data mining, …)

 Up to 8x on 8-core dual-socket Intel Clovertown, for 10M x 10
 Up to 6.7x on 16-proc. Pentium III cluster, for 100K x 200
 Up to 13x on Tesla C2050 / Fermi, for 110k x 100
 “infinite speedup” for out-of-core on PowerPC laptop

• LAPACK thrashed virtual memory, didn’t finish

 Eigenvalues of band symmetric matrices
 Up to 17x on Intel Gainestown, 8 core, vs MKL 10.0

 Iterative sparse linear equations solvers (GMRES)
 Up to 4.3x on Intel Clovertown, 8 core

 N-body (direct particle interactions with cutoff distance)
 Up to 10x on Cray XT-4 (Hopper), 24K particles on 6K procs.

31
Next: automatically xform code; new “HBL” theory just out!

BERKELEY PAR LAB

Autotuning: Computers, Rather
than People Tune Code

 Autotuners are code generators plus search
 Avoids two unsolved compiler problems: dependence analysis and

accurate performance models
 New: particles, stencils, graphs,… and manylane/core optimizations
 New roofline model to aid in performance understanding

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

RTM/wave eqn.

RTM/wave eqn.

7pt Stencil
27pt Stencil

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

SpMV
SpMV

7pt Stencil

27pt Stencil
DGEMM

DGEMM

GTC/chargei

GTC/pushi

GTC/chargei

GTC/pushi

Algorithmic intensity: Flops/Word Algorithmic intensity: Flops/Word

Peak compute

32

BERKELEY PAR LAB

Parallel Correctness:
Testing and Debugging

 Some Results
 Active Testing: for finding non-deterministic bugs such as data races,

deadlocks, atomicity violations
• Open-source [BSD-licensed] CalFuzzer for Java
• Thrille for C/Pthreads and UPC

 Specification and assertion framework for parallelism correctness
• Introduced Bridge Predicates
• Nondeterministic Sequential Specification to separate parallel correctness

from functional correctness
 Concurrit: A testing framework for concurrent programs

• JUnit or xUnit for concurrent programs
• Applied to Chrome and Firefox browsers

 Concolic testing: for automated test input generation
• Java
• Javascript (ongoing)

33 33

BERKELEY PAR LAB

34

Parallel Browser

 2007 Vision: desktop-quality browsing on mobiles.
Now: yes, but only 200 web pages / battery charge.
 2007 Vision: browser as an app platform.
Now: Google Glass is a browser app.

BERKELEY PAR LAB

Parallel Browser

Parallelism improves responsiveness, energy use.
 2007: parallel browser controversial
 2013: Mozilla Servo & Google Blink browsers

Some of our results:

• First scalable parser (in Qualcomm browser)
• Synthesizer of parallel layout engines
• Parallel layout retrofitted to Safari via WebCL
• Collaboration with Mozilla on parallel Servo

BERKELEY PAR LAB

Program Synthesis

36

Synthesis: search a huge space for a program that
is semantically correct and high-performance
 alternative to classical AST-rewrite compilers
 search implemented as constraint solving

Some of our synthesizers:
 FTL: parallel layout engines
 Programming for ULP spatial manycore
 SQL query programming by demonstration

BERKELEY PAR LAB

37

Music Application

New user interfaces
with pressure-sensitive
multi-touch gestural
interfaces

Programmable virtual instrument
and audio processing

120-channel
speaker array

BERKELEY PAR LAB

More Applications:
“Beating down our doors!”

5 Original Apps: Parallel Browser (Ras Bodik), Music
(David Wessel), Speech (Nelson Morgan), Health
(Tony Keavney), Image Retrieval (Kurt Keutzer)

New external application collaborators:
 Pediatric MRI (Michael Lustig, Shreyas Vassanwala @Stanford)
Multimedia and Speech (Dorothea Kolossa @TU Berlin)
Computer Vision (Jitendra Malik, Thomas Brox)
Computational Finance (Matthew Dixon @UCD)
Natural Language Translation (Dan Klein)
 Programming multitouch interfaces (Maneesh Agrawala)
 Protein Docking (Henry Gabb, Intel)

38

BERKELEY PAR LAB

Pediatric MRI
Typical exam ~ 1 hour
Motion blurs the images
Scanner is a small loud tunnel

Difficult for children to stay still!

Traditional Solution: Anesthesia

Compressed
Sensing reduces
each scan to 15

seconds But takes too long
(hours) to

reconstruct image

BERKELEY PAR LAB

Compressed Sensing for
Pediatric MRI

• Image reconstruction from 1-2 hours down to < 1 min
• In use in clinical trials

BERKELEY PAR LAB

Today’s Demos

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Motifs/Dwarfs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with

Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

Legacy
Code

Legacy OS

Multicore/GPGPU

Efficiency Language Compilers

BERKELEY PAR LAB

42

BERKELEY PAR LAB

Demo: The Parallel Meeting Diarist
Gerald Friedland

International Computer Science Institute (ICSI)

 Work together with

primarily:
Katya Gonina
David Sheffield
Adam Janin
Brian Hill
Jike Chong
Nelson Morgan
Kurt Keutzer
Ganapati S.
Mishali N.

BERKELEY PAR LAB

43

BERKELEY PAR LAB

Components of the Meeting Diarist

Created a fully integrated, very fast meeting diarist
SEJITized that is currently tech-transfered to Intel.

BERKELEY PAR LAB

44

BERKELEY PAR LAB

Diarizer Results and Impacts

Created a fully integrated, very fast meeting diarist
using SEJITs:

Before Par Lab After Par Lab
“who spoke
when”

~10k LOC
0.3 x RT

~100 LOC
250 x RT

“what was
said”

~100k LOC
0.1 x RT

~ 5k LOC
1 x RT

Online=Offline processing for “who spoke when”
Diarization used for BIG DATA video processing
Tech-transfer to Intel

BERKELEY PAR LAB

Par Lab Publications Tally

 193 Conference Papers
 28 Journal Papers
 94 Technical Reports
 12+ Best Paper Awards

 Berkeley View TR, >1,300 citations
 Par Lab papers, >8,000 citations

45

BERKELEY PAR LAB

Par Lab Educational Impact
 Par Lab summer bootcamps

 2009-2012: >1300 attendees including >300 from industry
 CS61C Reworked intro architecture class with parallelism

 480 students in Fall 2012 semester
 Revised 5th edition of undergrad text (used at 400 universities)

 CS152 Undergrad Architecture using Chisel processors
 CS164 Students design and own DSLs, implement a browser
 CS194 Undergrad parallel patterns class

 3rd offering, co-taught with Tim Mattson, Intel
 3 posters here from successful undergrad projects

 CS250 Graduate VLSI Design using Chisel/Agile Hardware
 CS267 Graduate parallel computing class

 Added material on dwarfs, patterns, autotuning, apps
 Homeworks ported to .net with Microsoft
 NSF-funded MOOC XSEDE launched spring 2013

46

BERKELEY PAR LAB

Par Lab Students

PhD students
 91 total PhD participants,
 23 of which graduated by 2013
MS Students
 35 total MS participants,
 13 of which graduated by 2013
Post-Docs
 5 current

47

BERKELEY PAR LAB

Par Lab Book

 18 chapters
 Overview + 1-2

research papers
 ≈ 600 pages
 Expected by June 30
 Amazon Ebook $0.99

 Print book signup page

48

BERKELEY PAR LAB

Multiple Follow-On Projects
Underway

OS and Music work continuing in new SWARM
Lab, programming the “swarm” of environmental
devices
http://swarmlab.eecs.berkeley.edu

 Software synthesis, Correctness -> Chaperone,
ExCape NSF Expedition

 ASPIRE: patterns, communication-avoiding
algorithms, SEJITS, RISC-V, specialized
architectures, Chisel, Agile Hardware
http://aspire.eecs.berkeley.edu

49

BERKELEY PAR LAB

Thanks to our sponsors!

Research supported by Microsoft (Award
#024263) and Intel (Award #024894) funding
and by matching funding by U.C. Discovery
(Award #DIG07-10227).

 Additional support comes from Par Lab affiliates
National Instruments, NEC, Nokia, NVIDIA,
Samsung, and Oracle/Sun.

50

	Par Lab:�Where we ended up
	Par Lab Timeline
	Initial Par Lab “Lasagna” Stack
	Dominant Application Platforms
	Manycore
	GPU/SIMD Effectiveness
	Performance/Energy Counters
	RAMP Gold
	Architecture FPGA Emulation
	RISC-V ISA
	Chisel: Constructing Hardware In a Scala Embedded Language
	“Agile Hardware” Development
	Operating Systems
	Tessellation OS: Space-Time Partitioning + 2-Level Scheduling
	PACORA:�Resource Management using Convex Optimization
	“Harts”: Hardware Threads�A Better Resource Abstraction
	Lithe: “Liquid Thread Environment”
	Types of Programming�(or “types of programmer”)
	How to make parallelism visible?
	Computational Patterns Common Across Applications
	Dwarf/Patterns Popularity �		(Red Hot  Blue Cool)
	“Our” Pattern Language (OPL-2010)
	Mapping Patterns to Hardware
	High-level pattern constrains space of reasonable low-level mappings
	Specializers: Pattern-specific and platform-specific compilers
	SEJITS: “Selective, Embedded, Just-In Time Specialization”�
	SEJITS In A Nutshell
	Current Par Lab Stack
	Supporting QoS inside Apps
	Communication-Avoiding Algorithms
	A few examples of speedups
	Autotuning: Computers, Rather than People Tune Code
	Parallel Correctness: �Testing and Debugging
	Parallel Browser
	Parallel Browser
	Program Synthesis
	Music Application
	More Applications:�“Beating down our doors!”
	Pediatric MRI
	Compressed Sensing for�Pediatric MRI
	Today’s Demos
	Slide Number 42
	Components of the Meeting Diarist
	Diarizer Results and Impacts
	Par Lab Publications Tally
	Par Lab Educational Impact
	Par Lab Students
	Par Lab Book
	Multiple Follow-On Projects Underway
	Thanks to our sponsors!

